
 1

VARIABLES IN NATURAL LANGUAGE: WHERE DO THEY COME

FROM?
Jaroslav Peregrin*

www.cuni.cz/~peregrin
[Variable-Free Semantics (ed. M.Boettner and W.Thümmel), Secolo, Osnabrück, 2000, 46-65]

0. Introduction

What is a variable and in which sense can we say that natural language contains variables?
Inspecting the Oxford Advanced Learner’s Dictionary we learn that a variable is a ‘variable
thing or quantity’. The American Heritage Dictionary of the English Language tells us that a
variable is (1) ‘something that varies or is prone to variation’; (2) within astronomy, ‘a
variable star’; and (3) within mathematics, ‘a quantity capable of assuming any of a set of
values’ or ‘a symbol representing such a quantity’. Penguin’s Dictionary of Mathematics
states that a variable is (1) ‘a mathematical entity that can stand for any of the members of a
set’ and (2) ‘an expression in logic that can stand for any element of a set (called the domain)
over which it is said to range’. The Oxford Dictionary of Philosophy gives no explicit
definition, but explicates a variable informally as something which can replace a word in a
sentence and which can then be seen as ‘pointing’ at different members of a domain.
 From this mini-recherché two senses of ‘variable’ seem to emerge a narrower sense, in
which a variable is something which inhabits the realms of logics and mathematics, and a
wider sense in which a variable is simply anything that varies. It seems also clear that this
latter concept of variable is wide to the point of not being a concept at all (for surely any thing
can be seen as somehow varying, i.e. changing, evolving, or displaying varying aspects etc.),
and therefore the only concept we really have is the narrower one. This means that we should
see variables as primarily a matter of logical and mathematical calculi.
 Does this mean that it makes no real sense to speak about variables in connection with
natural language? Of course not: natural language is in various respects similar to formal
calculi; and formal calculi are employed, in various ways, to regiment, analyze or explicate it.
It might therefore be both possible and reasonable to transfer the concept from the latter to the
former. To find out whether and in which sense this is justified, we must investigate (i) the
role of variables within logical calculi, and (ii) the ways in which we can, or should, see
natural language through the prism of such calculi.

1. Variables within logic

1.1 The birth of variable

The concept of variable, as nowadays employed within logic and mathematics, is inseparably
connected with the concept of quantifier developed by Gottlob Frege and his followers. Frege,
when introducing quantifiers, says roughly this: Imagine a sentence decomposed into two

* The author is grateful to Vladimír Svoboda for helpful criticism.

 2

parts, and imagine one of the parts „abstracted away“, thus turning the sentence into an
„unsaturated“, gappy torso. Then think of the gap in this matrix as being filled with various
things and consider the truth values of individual cases - the truth value of a corresponding
quantificational sentence then can be computed from these values1. A variable is then a
symbol that is employed to mark the gap(s). Thus, in his Begriffsschrift (Frege, 1879, p.19),
he writes:

In dem Ausdrucke eines Urtheils kann man die rechts von ├─ stehende
Verbindung von Zeichen immer als Funktion eines der darin vorkommenden
Zeichen ansehen. Setzt man an die Stelle dieses Argumentes einen deutschen
Buchstaben, und giebt man dem Inhaltsstriche eine Höhlung, in der dieser selbe
Buchstabe steht, wie in
 a

├─∪ ─ X(a)

so bedeutet dies das Urtheil, daß jene Function eine Thatsache sei, was man auch
als ihr argument ansehen möge.2

Later, Frege came to see the ‘de-saturation’ which underlies quantification as only a special
case of ‘functionalization’, i.e. of the process of making a linguistic gap to define a function.
Thus in Funktion und Begriff (Frege, 1891, p.8), he writes:

In dem Ausdruck erkennen wir die Funktion dadurch, daß wir ihn zerlegt denken;
und eine solche mögliche Zerlegung wird durch seine Bildung nahe gelegt. ...
Wenn ich nun z.B. sage „die Funktion 2•x3+x“, so ist x nicht als zur Funktion
gohörig zu betrachten, sondern dieser Buchstabe dient nur dazu, die Art der
Ergänzungsbedürftigkeit anzudeuten, indem er die Stelle kenntlich macht, wo das
Zeichen des Arguments einzutreten hat3.

1 This consideration has later come to be seen as ambiguous between the ‘substitutional’ and the
‘objectual’ version. According to the ‘substitutional’ version of the story, we fill the gap literally: we
replace the variable by suitable expressions, thus saturating the matrix ‘syntactically’. According to
the ‘objectual’ version, on the other hand, we make the variable stand for suitable object, thus
saturating the matrix ‘semantically’. If we consider the matrix ‘x conquered Gaul’ (which might have
arisen, e.g., out of the sentence ‘Caesar conquered Gaul’ via taking away ‘Caesar’), then the
‘substitutional’ ‘re-saturation’ would consist in replacing x by various names (‘Caesar’, ‘Aristotle’,
‘Clinton’, ...) and thus turning the the matrix into various sentences (‘Caesar conquered Gaul’,
‘Aristotle conquered Gaul’, ‘Clinton conquered Gaul’, ...), whereas the ‘objectual’ one would consist
in making x stand for various individuals (Caesar, Aristotle, Clinton, ...) and thus making the matrix
express various propositions (that Caesar conquered Gaul, that Aristotle conquered Gaul, that Clinton
conquered Gaul, ...).
2 „In the expression for a judgement, the complex symbol to the right of ├─ may always be regarded
as a function of one of the symbols that occur in it. Let us replace this argument with a Gothic letter,
and insert a concavity in the content-stroke, and make this same Gothic letter stand over the
concavity, e.g.:

 a
 ├─∪ ─ X(a)
This signifies the judgement that the function is a fact whatever we take its argument to be.“

3 „We recognize the function in the expression by imagining the latter as split up, and the possibility
of thus splitting it up is suggested by its structure. ... For instance, if I say ‘the function 2•x3+x’, x
must not be considered as belonging to the function; this letter only serves to indicate the kind of

 3

This indicates that for Frege variables played a merely auxiliary role of ‘gap-markers’: they
helped turn expressions into unsaturated torsos which can be seen as indicating functions (not
denoting functions, for unsaturated expressions are no names and thus do not denote
anything)4 and which can yield saturated expressions (names, especially sentences) not only
by their gaps being filled with names, but also by the gaps (i.e. variables) being ‘bound’ by
quantifiers (or ‘abstracted away’ by Frege’s operator ’, which was the counterpart of the
modern λ).

1.2 Bound variables

Let us now restrict our attention to bound variables, i.e. to variables which are within the
scope of a quantifier. The important thing to notice is that they are not essential: we can do
logic (predicate calculus) wholly without them. What does this mean?
 It is well known that we can (as Polish logicians demonstrated) do predicate calculus
wholly without parentheses; and this fact is usually taken to show that parentheses are
idiosyncratic to one specific way of articulating the syntax of the calculus, and they are not
essential for the calculus as such. It is less well known that precisely the same holds for
(bound) variables. A particularly instructive way of reformulating the syntax of the first-order
predicate calculus enabling us to rid ourselves of variables was presented by Quine (1960);
and this way can be generalized to higher-order calculi as well (for second-order predicate
calculus, this has actually been carried out by Došen, 1988). Indeed, that predicate calculus of
any order can be articulated without variables follows from the proof of the equivalence of
lambda calculus and combinatory logic (see Curry and Feys, 1957).
 Why are bound variables not essential? Informally speaking, the reason is that their role
is merely auxiliary, it is a role which can be played also by other things. The analogy with
parentheses may be helpful: parentheses are dispensable for their task is to specify the order in
which logical operators apply, and they are no longer needed if we use prefix (instead of the
infix) notation - for then the order is unique. Likewise, variables are inessential for their role is
simply that of a clamp (they connect quantifiers with the appropriate places within the matrix),
and this can be provably accomplished using other means (even utilizing things evocative of
real clamps, such as the arrows in Bourbaki, 1958).
 To illustrate how it is possible to rid ourselves of variables, first think about quantifiers
attached only to atomic formulas with unary predicate constants. Then we obviously need no
variables at all: we can treat quantifiers syntactically on par with ordinary individual constants
and write, e.g., P(∃) instead of ∃ xP(x) (if we want to make explicit the essential semantic
difference between quantifiers and individual constants, we can make predicates the arguments
of quantifiers, rather than vice versa, and thus write ∃ (P)). If we now allow for binary predicate

supplementation that is needed; it enables one to recognize the places where the sign for the argument
must go in.“
4 Frege distinguished between a function and the course of values of the function. His function is
something which is almost linguistic, something which we now would probably call rule. His course
of values is the function in the modern sense - in effect a certain set of ordered pairs of objects.
Whereas what he calls a function is no object, what he calls the course of values of a function is, and
hence it can be named.

 4

constants, the situation changes: we cannot write R(∃ ,∀), for this would be ambiguous between
∃ x∀ yR(x,y) and ∀ y∃ xR(x,y). Another problem arises when quantifiers are attached to non-
atomic formulas (even when these contain only unary predicate constants): P(∃)∧ Q(∃) would be
ambiguous between ∃ x(P(x)∧ Q(x)) and (∃ xP(x))∧ (∃ xQ(x)). However, the needed
disambiguation can be carried in ways which avoid variables: we can, e.g., state the linear order
of the quantifiers using superscripts, so that ∃ x∀ yR(x,y) would be R(∃ 1,∀ 2), whereas ∀ y∃ x
R(x,y) would be R(∃ 2,∀ 1); and similarly ∃ x(P(x)∧ Q(x)) would be P(∃ 1)∧ Q(∃ 1), whereas
(∃ xP(x))∧ (∃ xQ(x)) would be P(∃ 1)∧ Q(∃ 2).
 An obvious objection is that such superscript notation would not lead to a syntax which
could support a reasonable compositional semantics. This may be right, but what Quine and
others have demonstrated is precisely that there does exist a syntax which underlies
compositional semantics and which manages without variables. Let us sketch the idea of these
proposals.
 First, for the sake of simplicity, we shall consider monadic first-order predicate calculus
(i.e. first-order predicate calculus involving no predicate constants of arity greater than one).
The syntax of this calculus is based on the following rules:
 (i) A (unary) predicate plus a term (where a term is an individual constant or a variable;
we omit functors for simplicity) give a formula.
 (ii) ¬ plus a formula give a formula.
 (iii) ∧ (∨ , →) plus two formulas give a formula.
 (iv) ∃ (∀) plus a variable plus a formula give a formula.
The basic idea for dispensing with variables is to treat a quantifier as something which can yield
a formula together with a predicate. This is fine, we have seen, with formulas like ∃ xP(x),
which can be seen directly as the combination of a quantifier with a predicate constant (∃ with
P). Problems, though, arise with formulas like ∃ x(P(x)∧ Q(x)) - for such formulas need to be
seen as the combination of a quantifier with a complex predicate (∃ with the conjunction of P
and Q), and we lack the way to form a conjunction of predicates. The remedy, however, is to
add such a way to our syntax; one of the possibilities to do this is to replace (iv) by (iv’) and to
add (v) and (vi):
 (iv’) ∃ (∀) plus a predicate give a formula.
 (v) ¬ plus a predicate give a predicate.

(vi) ∧ (∨ , →) plus two predicates give a predicate.
Then, writing predicates as arguments of quantifiers5, we can clearly reflect the difference
between ∃ x(P(x)∧ Q(x)) and (∃ xP(x))∧ (∃ xQ(x)) as that between ∃ (P&Q) and ∃ (P)∧∃ (Q). The
situation complicates itself, of course, when we consider full (i.e. nonmonadic) first-order
predicate calculus; for the presence of predicate constants of arities greater than one necessitate
further rules for predicates. (Thus in this case we have, e.g., formulas such as ∃ xR(x,x), which
must be treated as ∃ applied to something as the ‘reflexivization’ of the binary predicate R; so
we need a rule which takes R and yields a unary predicate which applies to an individual just in
case the individual stands in the relation of R to itself.). However, that all of this can be handled
in an analogous vein is precisely what Quine has demonstrated.
 All of this justifies our claim that (bound) variables are not essential elements of the
predicate calculus; they are better seen as syncategorematic symbols on par with parentheses.

5 This kind of syntax does justice to the fact that if we treat quantifiers as categorematic terms (like
within lambda calculus - see Church, 1940) we usually treat them as second-order predicates (unary
predicates predicable of unary predicates), hence as denoting classes of classes of individuals.

 5

1.3 Free variables

Now what about free variables and open formulas? For them, the most straightforward
approach appears to be to take them as mere steping stones on the way to closed formulas.
Seen thus, a variable x and a formula F containing x free are only intermediaries to formulas
such as ∃ xF and ∀ xF (or, more generally, λxF6); and they can be ‘kicked away’ when the
destination is achieved. Their usefulness consists in the fact that as the steping stones they are
extremely simple and elegant; and they provide for the usual seminally simple grammar of the
predicate calculus. Seen thus, free variables are simply to-be-bound variables. Nevertheless
what we have stated in the previous section means that bound variables are dispensable, and
hence that they are better seen not as real constituents of the calculus; so if free variables are
only their pre-bound stages, they are surely dispensable too.
 However, it may be insisted that open formulas are more than this, that they are
needed for something more than for arriving at closed formulas. (We can perhaps distinguish
two versions of this claim: one is that open formulas are needed as schemes, i.e. as means of
envisaging types of closed formulas; the other is simply that there is no reason for denigrating
open formulas as less fully-fledged constituents of logical calculi as closed ones.) As what
interests us here is natural language, it is crucial to see how this view fares from the point of
view of the logical analysis of natural language; we should ask whether open formulas are in
some sense necessary for the analysis of language.

Hence the question facing us now is the following: are there natural language
sentences which can be reasonably seen as counterparts of (corresponding to, adequately
analyzable by means of, having as their logical forms) open logical formulas? To answer this,
we must first investigate precisely in which sense a natural language sentence can be seen as a
counterpart to a formula of a logical calculus, in which the former’s ‘logical form’ can be
expressed by the latter.

2. Logic and Natural Language

2.1 Origins of Logical Analysis

At the beginning of this paper we said that logical calculi can be used to regiment natural
language; but more is true: logical calculi resulted from regimentation of natural language.
Going back to Frege once more, we see that his concept script, a predecessor of our predicate
calculus, emerged directly from his desire to bring natural language to the form where we are
rid of everything which is not important from the point of view of consequence.7

6 It is clear that λ-abstraction can be seen as the only variable binding operation - once we see
quantifiers as second-order predicates, quantification gets decomposed into λ-abstraction and simple
application: ‘∃ xF’ turns into a shorthand for ‘∃ (λxF)’. This is also, I think, what made Frege see
quantification as based on a special case of ‘functionalization’.
7 Thus, Frege (1879, p. IV) writes: „[Die vorliegende Begriffsschrift] soll also zunächst dazu dienen,
die Bündigkeit einer Schlußkette auf die sicherste Weise zu prüfen und jede Voraussetzung, die sich
unbemerkt einschleichen will, anzuzeigen, damit letztere auf ihren Ursprung untersucht werden

 6

 When we look at the syntax of predicate calculus, we can see that it is based on three
kinds of rules:
 (i) rules of predication, connecting predicates with the appropriate number of terms;
 (ii) rules of logical operators, constructing more complex statements out of simpler
statements with the help of logical operators (negation, conjunction, disjunction, implication);
and
 (iii) rules of quantification, prefixing quantifiers to statements.
 It is clear that the rules of the first two kinds straightforwardly reflect basic syntactic
operations of natural language: these are, respectively, that we can associate a verb phrase
with noun phrases to form a sentence, and that we can negate a sentence or put two sentences
together by means of a connective, respectively. The rules of the third kind, however, are
different, they do not reflect a basic syntactic structure of natural language; in fact, they stem,
as we have seen, from certain metalinguistic considerations. We have already seen how Frege
employed variables to allow him to say such things as ‘when we saturate a gappy expression
in certain way(s), we get certain value(s)’.
 Thus, the structure of a quantificational formula (i.e. of a formula of the form
quantifier + variable + formula) does not reflect the structure of a common natural language
sentence, it is rather a shortcut for saying ‘if we fill that gap, which in the formula is marked
by the variable, with various things, we get a true sentence (at least) so many times as
claimed by the quantifier’. Hence to say that, e.g., the formula ∃ xPx is true is to say that if we
keep filling the gap x in Px with various things, we gain a statement which is true at least
once.
 The adoption of this kind of quantificational rules has had far-reaching consequences.
On one hand, it has fostered the impressive development of modern logic and mathematics
which we have been witnessing; on the other hand it has caused much confusion concerning
the logical analysis of natural language. Frege’s choosing of this way to regiment our way of
talking has caused many people to feel that quantifiers and variables are entities somehow
covertly contained within natural language. But we should keep in mind that, as we have
seen, it is perfectly possible (although perhaps less effective) to do Fregean logic without
variables and variable-binding quantifiers.

2.2 Logical Form?

We have just seen that Frege’s original view of the ‘logical form’ of an expression was
something like ‘that which remains of the expression if we strip off everything which is
irrelevant from the viewpoint of consequence’. However, soon Frege himself (and then
especially his followers, notably Russell) concluded that the logical form is something which
may differ wildly from the surface form and that logical analysis is thus a far more intricate
enterprise than simple ‘stripping off’. (Russell’s famous paper ‘On Denoting’ is particularly
instructive from this viewpoint: there the author tries to demonstrate that the logical form of

könne. Deshalb ist auf den Ausdruck alles dessen verzichtet worden, was für die Schlußfolge ohne
Bedeutung ist." ("That is why I decided to forego expressing anything that is without significance for
the inferential sequence. Its [of the present ideography] first purpose, therefore, is to provide us with
the most reliable test of the validity of a chain of inferences and to point out every presupposition that
tries to sneak in unnoticed, so that its origin can be investigated.")

 7

sentences containing descriptions differs radically from what the surface of the sentences
would suggest.8)
 This has lead to the view that logical form is something buried deep inside each
expression and waiting for a ‘logical analysis’ to dig it out and bring it to light. Accepting this
picture seems to offer a suitable basis for saying that ‘natural language contains variables’: if
the logical form of an expression contains variables, then (as the form seems to be something
really present ‘inside’ the expression) the expression itself can be said to contain variables.
However, we are going to indicate that this whole picture of logical form as a definite thing
extractable from inside an expression is dubious. (Moreover, it follows from the above
considerations that even if we accepted this picture, or some weakened version of it,
expressions could be seen as containing variables only if they had open formulas as their
logical forms.)
 To see the dubiousness of the whole picture we must consider the general question of
what counts as a criterion for being a logical form of a given sentence. What justifies us in
saying that the logical form of a sentence S is given by a formula F? A necessary condition
seems to be that F must capture the truth conditions of S. But if this were also a sufficient
condition, it would mean that an expression has infinitely many logical forms: for if F
captures the truth conditions of S, then so do all formulas logically equivalent to it, notably
F∧ F, F∧ F∧ F etc. This means that if we want to have logical form as a unique thing
extractable from the expression, we must add some other necessary condition.
 An obvious candidate seems to be the condition that the logical form of S is rendered
by the ‘simplest’ or ‘least redundant’ of those formulas which capture the truth conditions of
S. However, even if these vague notions could be made precise enough within a given logical
calculus, it is hard to see how they could make sense across logical calculi: is the Russellian
analysis of A man walks, namely ∃∃∃∃ x(man(x)∧∧∧∧ walks(x)), ‘simpler’ than that which is offered
by, say, the theory of generalized quantifiers, namely (a(man))(walk)9?
 An improvement may be (and I think indeed is) to speak about ‘closeness to surface
form’ instead of about ‘simplicity’ or ‘nonredundancy’: to say that the logical form of S is
that of the formulas capturing the truth conditions of S whose structure is the closest to the
(surface) structure of S. However, it seems to be clear that if we employ a logical calculus
with a sufficiently rich syntax, we can make the analysis as close to the surface as we desire,
and this would mean that there is no nontrivial concept of logical form (as opposed to surface
form) after all. (And as it would render every two sentences differing on the surface as
differing in logical form, it would apparently contradict the basic intuition behind the concept
of logical form.)
 The moral of these considerations seems to be the following: we may regiment A man
walks as ∃∃∃∃ x(man(x)∧∧∧∧ walks(x)) (which has the advantage of utilizing only the simple and
perspicuous apparatus of first-order logic), or we may regiment it as (a(man))(walk) (which
is closer to the surface, but logically more involved), or we may regiment it, say, within
dynamic logic as ∃∃∃∃ Dx(man(x)∧∧∧∧ Dwalks(x))10 (which captures some semantic aspects of the
analyzed sentence, which are ignored by the ‘static’ analysis, which are nevertheless not
obviously a matter of truth conditions), or as (walk)(aD(man))11 (which does the same as the

8 See Russell (1905).
9 See Barwise & Cooper (1981).
10 See Groenendijk & Stokhof (1991); the indices indicate that the indexed operators are not the ones
of standard logic, but rather their dynamic counterparts.
11 See Peregrin & von Heusinger (1995).

 8

previous one while being again closer to the surface). Each of these analyses may be useful
for some purposes, but none of them is the analysis (there also seems to be a certain trade-off
between exhaustiveness of analysis and simplicity and prosperousness of the means
employed). Hence there seems to be nothing as the logical form, but rather only various ways
to envisage truth conditions (or perhaps some more general semantic features)12.
 However, what if we accept that logical form may be nothing over and above surface
form, and claim that this structure sometimes corresponds to an open formula? What if we
argue that there are some expressions, e.g. pronouns, which behave expressly like free
variables? Two kinds of objections to such a view can again be raised. First and foremost, it
is not entirely clear what is meant, in this context, by ‘behave like a variable’. We have seen
that the original role of a variable was to mark a place within a gappy expression - and this is
a metalinguistic role, a role within a certain enterprise of decomposing expressions and
reasoning about them (especially examining what happens when we fill their gaps in various
ways). And this does not seem to be a role meaningfully ascribable to an expression of natural
language.
 So what about the more general characterization of variable, like: that which can stand
for any element of a domain? Does natural language not comprise expressions which behave
in this way? Does natural language not contain expressions which are said to have variable or
distributive reference? Here the trouble is that to classify a natural language expression as
something ‘which can stand for any element of a domain’, we would require the fixed relation
of standing for or reference - and elsewhere I have argued at length that the relation of
reference is too tricky to be taken as an ‘unexplained explainer’ (see Peregrin, 1995, Chapter
8; and especially Peregrin, to appear).
 The second trouble is that even if we grant that some elements of natural language,
e.g. pronouns, stand variably for different things, it is hard to deny that in other respects they
are often very much unlike variables. Take the sentence He walks. In which respects is it like
the open formula walk(x) (or taking into account the gender of he, walk(x)∧∧∧∧ man(x))? I am
afraid that only in a single one: in that its subject is not a name (an individual constant). For
when one says he walks, he surely does not invite the hearers to substitute every (or any)
conceivable individual for he. He walks is always synonymous with a sentence containing a
name (or at least a description) in place of he (if I say he walks pointing at Salman Rushdie, it
is synonymous with Salman Rushdie walks), albeit it is synonymous with different sentences
on different occasions. In contrast, walk(x) is clearly equivalent with no formula of the shape
walk(c) with constant c; and the context in which it occurs play no role with respect to its
being equivalent to other formulas.
 A different way to salvage the absolutist notion of logical form may appeal to the
analyses of the human ‘language faculty’ as provided by Noam Chomsky. Chomsky’s
theories seem to imply that logical form is something ‘tangible’, which in some sense really
exists and can be depicted. However, a little reflection reveals that the Chomskian notion of
logical form has little to do with logic and hence with the realm where we have concluded the
nature of the concept of variable should be sought. Chomsky’s logical form is one of the
‘levels of representation’ which constitute his reconstruction of ‘human language faculty’, a
level which constitutes, as he puts is, the interface between language and other cognitive
systems (see, e.g., Chomsky, 1986). Chomsky claims that his logical form „does in fact have
many of the notational properties of familiar logical form, including the use of quantifier-

12 As Quine (1972, p.453) puts it: „Logical analysis ... may go one way or another depending on one’s
specific logical purpose.“

 9

variable notation“, that this is, however, a contingent fact. (ibid., 156)13. Moreover, Chomsky
defines variable as a certain species of what he calls the empty category, namely an „ A -
bound r-expression that must have Case by the visibility condition“ (ibid., 164). I think it is
quite clear that these concepts of logical form and of variable have nothing to do with the
Fregean, and hence with the principal logical, ones.14

3. Variables as Means of ‘Functional Classification’

3.1 Variables and Rules of Composition

The moral of the previous chapters is that from the viewpoint of analysis of natural language,
variables are, in principle, dispensable. However, if we look at the way logical analysis is
usually being carried out, what we see is that they are, in fact, far from dispensed with; and
this indicates that despite of being dispensable, variables must be remarkably useful. In this
chapter we are going to examine what this usefulness consists in, and we are going to try to
indicate how the role of variables can be easily misunderstood.

Elsewhere I claimed that variables are best seen as „auxiliaries helping us to codify
complicated rules“ (see Peregrin, 1995, p. 103). Here I want to elaborate on this point:
variables, I am going to show, are useful tools to characterize complex rules of composition
(especially grammatical rules of linguistic systems), and also to specify the behavior
(functioning) of some elements of these systems with respect to the rules. I claim that this is
what creates the illusion of variables being ‘contained’ within natural language expressions:
we use variables to articulate the linguistic, and especially semantic, functions of expressions,
and mistake the articulations for expositions of the expressions’ ‘insides’. However, variables
are no more inside expressions than holes for screws are inside screwdrivers.

To justify this thesis, we must first articulate a general framework to talk about objects
and their components. So let us imagine a realm of objects some of which are parts of others.
The realm can be clearly seen as a set, call it R, and the part-whole relationships can be
articulated in terms of a family <Oi>i∈ I of operators over R which represent the ‘ways of
composing’ elements of R into other elements of R. This means that e=Oi(e1,...,en) renders the
fact that e is composed of e1,...,en (in the way Oi). Seen thus, the part-whole system can be
considered as the ordered pair <R, <Oi>i∈ I> and hence as the (partial) algebra whose carrier is
R and whose operators are Oi. Alternatively we can imagine the elements of R as categorized
into sorts <Rj>j∈ J according to their behavior w.r.t. the ways of composition, and also
imagine the ways of composition <Oi>i∈ I refined into <Oi’>i∈ I’ so that each Oi’ is from the
Cartesian product of some sorts into a sort; and we can thus see the system as the many-sorted
algebra <<Rj>j∈ J, <Oi’>i∈ I’> (where for each Oi

’ there exist j1,...,jm,jm+1 so that the domain
D(Oi’) of Oi’ equals the Cartesian product Rj1×...×Rjm and the range R(Oi’) of Oi

’ is included

13 Personally, I find it hard to see the positive contents of this claim: for what does it mean, in this
context, to have ‘notational properties’?
14 Unfortunatelly many people do not realize that the logical form of logicians and that of Chomsky
are two essentially different things, and that if we use the same word to refer to both of them, it is
nothing more than a pure homonymy. I think that not seeing this and merging logical analysis with
Chomskian linguistics is tantamount to aiming at theories akin to such as would result from merging
metallurgy and biology into a unified theory of ‘nails’.

 10

in Rjm+1)15. If O is an operator of a many-sorted algebra A and R is a sort of A, then we shall
say that O takes (elements of) R (as its ith arguments) iff D(O) = R1×...×Ri-1×R×Ri+1×...×Rn
for some sorts R1,..., Ri-1,Ri+1,...,Rn of A; and if O takes elements of R as its ith arguments and
does not take elements of R as its jth arguments for any j≠i, then we shall say that O takes
(elements of) R uniquely.
 Language is one of the important things which can be seen as part-whole systems and
hence as partial or many-sorted algebras: the carrier of the algebra is constituted by the
expressions, and the operators are the grammatical ways of putting expressions together to
yield more complex expressions (in the case of language, we shall thus sometimes speak
about rules instead of about operators). For the sake of illustration, let us consider a very
simple language L0 containing names, unary predicates, and sentences each of which is the
concatenation of a name and a predicate. If N is the set of names, P the set of predicates, S the
set of sentences, and PRED the operation of concatenating a name with a predicate into a
sentence (thus PRED(n,p)= n∩p, where n∩p symbolizes the concatenation of n and p16), then
we can see L0 as the partial algebra <N∪ P∪ S,<PRED>>; or, better, as the many-sorted
algebra <<N,P,S>,<PRED>>, where PRED is from N×P into S. According to our definitions,
PRED takes names as first arguments, and it takes predicates as second arguments; it takes
both names and predicates uniquely.
 Let us also consider the extension L1 of L0: L1 contains names, predicates and
sentences like L0, but in addition to L0 it contains binary sentential connectives and such
sentences which consist of two sentences linked by a connective. This means that L1 can be
seen as the many-sorted algebra <<N,P,C,S>,<PRED,CON>>, where CON is from S×C×S
into S and CON(s1,c,s2)= s1

∩c∩s2. CON takes sentences as its first arguments and also as its
third arguments; so it does not take sentences uniquely. Let us further assume that CON
contains the expression ‘and’.
 Now given the rules of L1, we can take a name n and two predicates p1 and p2 and
form a sentence consisting of two subsentences, n∩p1 and n∩p2, connected by ‘and’. We can
do this by first applying PRED to p1 and n, then PRED to p2 and n, and then CON to ‘and’
and the results of the previous two operations. Thus, there is a (‘complex’) operator which
takes a name n and two predicates p1 and p2 into the sentence n∩p1

∩‘and’∩n∩p2. The existence
of this complex rule is in a sense implicit to the existence of PRED and CON (and ‘and’).
Now to characterize this complex operator, we have to say something like: first, PRED is
applied to the first predicate and the name, then PRED is applied to the second predicate and
the name, and then CON is applied to ‘and’ and the results of the previous two operations; or
better to say, as we did, first PRED is applied to p1 and n, then PRED is applied to p2 and n,
and then CON is applied to ‘and’ and the results of the previous two operations. When we

15 For the concept of many-sorted algebra and for its applications to natural language see Janssen
(1983). Of course not every algebra could be reasonably seen as amounting to a part-whole system:
the relation of being a proper part is essentially acyclic (i.e. its transitive closure is antisymmetric);
and hence if an algebra is to be seen as (amounting to) a part-whole system, it has to satisfy this
restriction. Thus, the operators of, e.g., an algebra in which, for some elements a, b, c, d and some
operators O and O’, a=O(b,c) and b=O’(a,d) cannot be reasonably seen as ‘rules of composition’ - for
this would mean that we would have to see b as a proper part of a and in the same time a as the
proper part of b.
16 As we want L0 to be English-like, we in fact assume that PRED is more than mere concatenation,
that it modifies the predicate in the appropriate way (in the simplest case by appending the suffix ‘-
s’). However, for the sake of simplicity we shall speak simply about concatenation.

 11

choose the latter way of articulation, we need some symbols to regiment the expressions ’the
first predicate’, ‘the second predicate’ and ‘the name’ of the former articulation. If we employ
such variables, we can directly designate the complex operator by some self-explicating
schema like CON(PRED(n,p1),’and’,PRED(n,p2)). This means that in this context we employ
variables to derive designators of complex operators from those of basic operators (plus, as
the case may be, those of elements).
 Complex operators which are in this way implicit to the operators of an algebra A are
sometimes called polynomials over A. Polynomials arise out of composing and iterating the
operators of A (and some trivial operators, namely projections, i.e. functions mapping
n-tuples on their ith constituents). The operator described in the previous paragraph,
CON(PRED(n,p1),’and’,PRED(n,p2)), is a polynomial over L1. To say that operators of an
algebra are closed under forming polynomials is to say that the operators include projections
and that they can be composed and iterated (and it seems that the operations of forming
wholes from parts should be closed in this sense).

Now if we look at a book where polynomials are defined (Grätzer, 1979, Janssen,
1983), what we see is that the employment of some kind of variables is quite essential to the
whole enterprise. However, in this context, variables are simply tools employed to form self-
explicating designators for complex operators or rules. In general, if we accept composibility
of operators (and the existence of projections) as a general principle, we accept that the
existence of any family of operators involves the existence of all polynomials based on the
family; and variables are indispensable tools of articulating canonical names for the
polynomials. Notwithstanding this though, we must realize that here we are using variables
on the metalevel, we use them to talk about language, more precisely about rules of language.
There is thus no question of these variables being ‘inside’ expressions.

3.2 Variables and Expressions’ Functioning

Let us now examine a part-whole system from the viewpoint of the ‘behavior’ of its elements.
The behavior clearly consists in the ways in which the elements, together with other elements,
constitute compounds.

To specify the behavior of an object it is necessary to summarize all cases of
composition into which it can enter. Let us articulate this idea formally: let A be a many-
sorted algebra, a an element of a sort R of A, and O an operator of A which takes R as its ith
argument, i.e. such that there are some sorts R1,...,Ri-1,Ri+1,...,Rn,Rn+1 of A such that D(O) =
R1×...×Ri-1×R×Ri+1×...×Rn and R(O) = Rn+1. The (O,i)-trace of a will be the function fO,i,a
from R1×...×Ri-1×Ri+1×...×Rn into Rn+1 such that if <a1,...,ai-1,a,ai+1,...,an>∈ D(O) for some
a1,...,ai-1,ai+1,...,an, then a1,...,ai-1,ai+1,...,an∈ D(fO,i,a) and fO,i,a(a1,...,ai-1,ai+1,...,an) =
O(a1,...,ai-1,a,ai+1,...,an). If O takes a uniquely, then we shall also speak about the O-trace of a
instead of about its (O,i)-trace. The O-trace of a thus in a sense characterizes ‘the behavior of
a with respect to O’; and all the traces of a w.r.t. all operators which take a characterize the
behavior of a w.r.t. the whole system.
 Now the only aspect of an item which is relevant from the viewpoint of a system is
clearly its behavior w.r.t. the system; thus, from this viewpoint, if we are able to capture the
behavior as an object (function), we could well deal directly with the behavior instead of with
the element itself. Let us assume that an element is uniquely determined by its behavior, i.e.
that there are no two elements with exactly the same behavior. A particularly instructive case

 12

obtains when items of a sort are taken by a single rule and are taken by it uniquely; or if, more
generally, the behavior of the items w.r.t. all the rules which take them is uniquely determined
by their behavior w.r.t. the single rule. This means: Let O be an operator and R a sort taken
uniquely by O and such that any two elements of R sharing the same O-trace are identical
(and hence share the same O’-trace for every O’ which takes them). In this case, an element
of R is uniquely determined by its O-trace; and then we can justifiably identify it with its O-
trace.

Now suppose that we do this for all elements of R; that is, for every a∈ R, we identify
a with fO,a. Then obviously for every <a1,...,an>∈ D(O), O(a1,...,an) = a(a1,...,ai-1,ai+1,...,an).
Hence we are, in a sense, ‘delegating’ the working of O to the objects of the sort R; the work
of the new O is merely to bring the capacities of these objects to bear on their fellow-
arguments. Such ‘functionalization’ of items of a sort thus deprives the rule involved of all its
substantial content rendering it a purely formal ‘applicator’ - all content is localized in the
objectual form. Note also, that the function fO,a coincides with (the course of values of) the
polynomial O(x1,...,xi-1,a,xi+1,...,xn): the domain of both of them is R1×...×Ri-1×Ri+1×...×Rn,
their common range is Rn+1, and for every a1,...,ai-1,ai+1,...,an from the common domain, the
value of both is O(a1,...,ai-1,a,ai+1,...,an). So by identifying a with its behavior, we are
identifying it with a certain polynomial operator; and since we have found variables
indispensable to articulate polynomials, we now see that they may be useful to articulate
objects’ behavior.
 Let us return to our example part-whole system L0. The behavior of the name n is
characterized by its PRED-trace, i.e. by the function fPRED,n such that for every predicate p,
fPRED,n(p) = PRED(n,p) (= n∩p). Similarly, the behavior of a predicate p is characterized by
the function fPRED,p such that for every name n, fPRED,p(n) = PRED(n,p). Suppose now that we
identify names with their ‘behaviors’: i.e. that we identify each n with its trace fPRED,n. The
operator PRED then becomes the application of a name to a predicate - since for every such
new name n and every predicate p, PRED(n,p) = n(p). Alternatively, we could identify
predicates (instead of names) with their behaviors, i.e. each p with its trace fPRED,p, which
would result in PRED becoming the application of a predicate to a name.
 Now imagine that we replaced both names and predicates with their behaviors: then,
clearly, PRED(n,p) would be neither n(p), nor p(n) (for then names would be functions from
P into S, predicates would be functions from N into S, leaving none of them within the
domain of the other). This indicates that optimally we might ‘functionalize’ only one of the
sorts. The reason for this, informally speaking, is that the working of PRED can be delegated
either to names, or to predicates17, but to delegate it to both at once is to duplicate it to a
harmful effect. Thus, if our aim is to shift as much of functioning as possible from rules to
elements, our best course is to find for each rule its own sort to whose elements the working
of the rule is delegated. (Whether we can thereby manage to ‘empty’ all rules depends on the
structure of the system18).

17 In fact, traditional logic has it in the latter way, while, e.g. Montague Grammar exploits the former
one.
18 The necessary condition is that there exists an injective mapping M of operators on sorts such that
for every operator O, O takes M(O) and takes it uniquely. However, this will not suffice: in order to
avoid circularity in the definition of functions, there has to exist a well-ordering of sorts such that for
every operator O, the sort M(O) is strictly greater than all other sorts taken by O. The existence of
such an ordering is tantamount to the existence of a ‘categorial indexing’, i.e. to the possibility of

 13

 Now if an element of the system is uniquely determined by its behavior, we can say
that it is the element which behaves thus and so. We can, e.g., say that a predicate, say walk,
is the element of L0 which takes ‘Peter’ into ‘Peter walks’, ‘Mary’ into ‘Mary walks’ etc.; i.e.
that it behaves in the way fPRED,’walk’. Moreover, as every predicate’s behavior coincides with
the workings of a certain polynomial rule, we can specify its behavior by pointing out the
rule. Thus, if we want to specify the behavior of ‘walk’, we can point out the polynomial
PRED(‘walk’,x) (or, expanding the definition of PRED, x∩’walk’). To indicate that what is
now referred to is an object, rather than a rule, we usually make use of something like the
lambda notation: we say that ‘walk’ is the item λx.PRED(‘walk’,x), or that it is λx.x∩’walk’19.
However, to say this is not to say that the word ‘walk’ contains a variable, it is rather to
envisage its behavior.
 Hence, the conclusion is that as we can profitably employ variables to codify complex
rules (polynomials), and as the behavior of some expressions is identifiable with the working
of some such rules, variables are helpful tools for specifying expressions’ behavior, tools of
the ‘functional classification’ of expressions20.

3.3 Semantic Interpretation

Language is not simply a system of expressions composible into more complex expressions;
its crucial feature is that its expressions have meaning. And indeed, the relevant functional
classification of expressions, which invokes variables, is usually a matter of semantic
functioning; i.e. not only a matter of the ways in which expressions take part in constituting
more complex expressions, but rather a matter of the ways in which they contribute to the
meaning of the wholes in which they occur.
 Within our algebraic setting, this means that we should not reconstruct language as
simply an algebra of expressions, but that we should see each element of the algebra
associated with a meaning (whatever it may be21). And as meanings are assumed to be
compositional, we can see mappings of expressions on their meanings, semantic

indexing sorts in such a way that each operator comes to combine an element of a sort A/B1...Bn with
elements of the respective sorts B1,...,Bn into an element of the sort A. See also Peregrin (1992).
19 We have been speaking rather loosely abour ‘identifying an element with a function’, about ‘an
operator becoming an application’, etc. Each such identification involves the replacement of the
original algebra by another algebra, which is nevertheless isomorphic with the original one. What
makes it possible to pass freely from the one algebra to the other is that we are investigating
structural properties. To algebraically reconstruct a factual range of items (e.g. the range of
expressions of a factual language) is to define an algebra embodying the relevant structure of the
range - what is important is the structure alone, the factual nature of the elements of the algebra is no
more important than the nature of the marks chosen to site towns on a map. So we can also employ
such items which, so to say, wear their functioning on their sleeves - and it is precisely this kind of
reconstruction which often appears most useful.
20 The term functional classification is purposefully chosen to allude to the same term employed by
Wilfrid Sellars (1974).
21 I have repeatedly stressed (see esp. Peregrin, 1995) that language cannot be seen as a nomenclature,
as a set of labels stuck on pre-existing real-world objects. However, once we drop the assumption that
meanings are ‘real’, ‘pre-linguistic’ objects, then the picture of meanings as associated with
expressions becomes harmless and is often useful.

 14

interpretations, as homomorphisms from the algebra of expressions into an algebra of
denotations22.
 Now such a semantic interpretation can be seen as having two parts, corresponding to
the two different ways of defining the denotations, and hence explicating the semantic
functions, of individual sorts of expressions. (i) The semantic functioning of expressions of
some sorts, of the ‘basic’ ones, are ‘explicated’ only in an utterly trivial way - it is simply
stipulated that each of these expressions has some denotation. This means that for the basic
sorts of expressions it is simply assumed that there exist corresponding domains of
denotations and that the elements of the former are mapped on those of the latter. Nothing
nontrivial is said about the nature of the domains and their elements. (ii) The semantic
functioning of expressions of the other, ‘nonbasic’ sorts is then explicated relatively to the
functioning of those of the ‘basic’ ones. This is to say, the denotations of expressions of the
nonbasic sorts are identified with their behviors, i.e. with the ways in which they constitute,
together with the denotations of expressions composible with their ones, denotations of the
resulting compounds.
 To see this working, let us consider L0 once more. The usual way to define semantics
for a language of this kind is to assume a domain U of individuals and a domain B of
propositions (which might be, in the simplest case, the two truth values), to map each name
on an element of U, each predicate on a function from U to B (we can call such functions
properties), and each sentence consisting of a name n and a predicate p on that element of B
which arises out of the application of the function denoted by p on the denotation of n. This is
to say that the semantic interpretation of L0 is a homomorphism from L0 into the algebra
D0=<<U,[U→B],B>,<APPL>>, where [U→B] is the set of functions from U to B and APPL
takes an element from U and an element from [U→B] into the value of the application of the
latter to the former (APPL(x,y)=y(x)). Thus, N and S are treated as semantically ‘basic’
categories of L0: their expressions are simply taken to denote some elements of the
corresponding domains U and B. In contrast to them, the semantic function of the elements of
P is really explicated - albeit only relatively to the semantic functions of the elements of the
basic categories.
 Passing from L0 to L1, we add another non-basic category: its elements are
semantically interpreted by being mapped on functions from B×B to B (call such functions
propositional junctors) so that the denotation of a sentence consisting of two sentences
connected by the connective results from the application of the function denoted by the
connective to the denotations of the two contained sentences. The denotation-algebra is now
D1=<<U,[U→B],B,[B×B→B]>,<APPL1,APPL2>>, where APPL1 is from U×[U→B] into B
such that APPL1(x,y)=y(x), and APPL2 is from B×[B×B→B]×B into B such that
APPL2(x,y,z)=y(x,z).
 Now let us consider the operation taking an individual i and two properties r1 and r2
into a proposition that the individual has both the properties. This operation consists in first
applying APPL1 to i and r1, then applying APPL1 to i and r2, and finally applying APPL2 to
the conjunction function and the result of the previous two operations. If we denote the
conjunction function by &, the operator is the polynomial
APPL2(APPL1(i,r1),&,APPL1(i,r2)). Allowing the explicit names of the application operators
to give way to the usual bracket notation gives us &(r1(i), r2(i)); and by writing & in the usual
infix way, we have r1(i) & r2(i). Now if we consider the semantic interpretation of L1 in D1
and assume that ‘and’ denotes &, we see that this polynomial operator over D1 is the semantic

22 See Janssen (1983, Chapter I).

 15

counterpart of the polynomial CON(PRED(n,p1),’and’,PRED(n, p2)) over L1; we can say that
the former embodies the semantic function of the latter (or that the latter expresses, or
represents, or stands for, the former).
 The same applies to the elements of the algebras. That kind of function of an element
of L1 which was discussed in the previous section can be called its syntactic function,
whereas its semantic function is actually the function of its denotation within the algebra D1;
and since the denotation has been devised precisely so as to directly coincide with its
function, it is this denotation itself. We have seen that the syntactic function of the predicate
‘walk’ is the function λx.PRED(x,’walk’) (= λx.x∩’walk’). The denotation of ‘walk’ is now
the function which takes the individual denoted by the name ‘Peter’ into the proposition
denoted by the sentence ‘Peter walks’, the individual denoted by the name ‘Mary’ into the
proposition denoted by the sentence ‘Mary walks’, etc. If we designate that element of D1 on
which an expression of L1 is mapped by the italicized form of the expression (so that the
individual denoted by the name ‘Peter’ is Peter, the proposition denoted by the sentence
‘Peter walks’ is Peter walks etc.), we can say that the denotation of ‘walk’ is the item walk
such that walk(Peter) = Peter walks, walk(Mary) = Mary walks, etc.; hence, in other words
(or rather signs), the denotation of ‘walk’ is λx.walk(x). Thus, while the syntactic function of
‘walk’ (= its behavior w.r.t. the algebra L1) is λx.x∩’walk’, its semantic function (= the
behavior of its denotation w.r.t. the algebra D1) is λx.walk(x).
 Saying that the semantic function of ‘walk’ is λx.walk(x), however, has only little
informative value: λx.walk(x) is nothing else than walk, and saying that the denotation of
‘walk’ is walk is nothing more than saying that the denotation of ‘walk’ is that element of the
denotation algebra which is denoted by ‘walk’. To see how a semantic function can be
pointed out in a less trivial way, let us consider the extension L2 of L1. L2 has the same carrier
as L1, but in addition to the operators of L1 it contains the operator PCON taking a predicate,
a connective, and a predicate into a predicate: thus if p1 and p2 are predicates and c a
connective, then PCON(p1,c,p2) is a predicate; and thus if n is a name, then
PRED(n,PCON(p1,c,p2)) is a sentence. Hence, PCON takes, e.g., the expressions ‘walk’,
‘and’ and ‘whistle’ into the complex predicate ‘walk and whistle’, which can then be
combined with ‘Peter’ into ‘Peter walks and whistles’. In order to extend a semantic
interpretation of L1 in D1 to the interpretation of L2, we must extend D1 with an operator
which would be the semantic counterpart of PCON - let us call it PCON*. It seems to be
natural to require that ‘Peter walks and whistles’ denote the same proposition as ‘Peter walks
and Peter whistles’23; that is, to require that for every n, p1, c and p2, the denotation of
PRED(n,PCON(p1,c,p2)) coincides with that of CON(PRED(n,p1),c,PRED(n,p2)). If this is so,
then for every individual i, every properties r1 and r2, and every propositional junctor o,
PCON*(r1,o,r2)(i) = r1(i) o r2(i). That is, the predicate PCON*(r1,o,r2) takes an individual i
into the proposition r1(i) o r2(i); hence PCON*(r1,o,r2) = λi. r1(i) o r2(i). This means that, e.g.,
PCON*(walk,&,whistle) (= the denotation of PCON(‘walk’,’and’,‘whistle’), i.e. the
denotation of ‘walk and whistle’) is λi. walk(i) & whistle(i)24. In this way we describe certain
elements of the denotation algebra, and thereby the semantic functions of certain elements of
the expression algebra, by means of variables. We take for granted the denotations of the

23 It certainly is natural if we assume that ‘denote the same proposition’ is to explicate ‘have the same
truth conditions’.
24 Remember that ‘&’ was introduced earlier as a name for what we now see as the denotation of
‘and’, i.e. for and.

 16

basic predicates and connectives (‘walk’, ‘whistle’, ‘and’), and we explicate the denotations
of, e.g., complex predicates (‘walk and whistle’) in their terms.

Therefore we are using variables to designate the functioning of the elements of the
denotation algebra, and as we also take the elements of the expression algebra to be endowed
with meanings via being mapped on the elements of the denotation algebra, we thus use
variables to explicate their meaning. However, by saying that ‘walk and whistles’ means (or
denotes, or stands for, or expresses, or whatever) λi. walk(i) & whistle(i) we are not saying
that ‘walk and whistles’ contains the variable i: what we say is that the semantic behavior
(= meaning) of the expression is describable in terms of the result of its application to
individuals.

3.4 Composing and Decomposing Constructions

Now let us take an even more abstract vantage point: let us think about constructing entities
in general. We construct complex entities by putting simpler entities ‘together’: within the
physical world (as when we construct a chair out of logs and nails), or within the world of
abstract entities (as when we construct the sum out of two numbers). The ways of ‘putting
together’ are ‘domain-specific’: when we construct a chair, then they consist in certain
fastenings of objects one to another with the help of other objects; when we construct a
number, they consist in adding, multiplying and the like.
 However, there seem to be some quite general principles governing all kinds of
constructings. It seems that it is in the nature of the concept of constructing that constructions
can be composed and iterated, and that the trivial constructions, like choice, are generally
available. This is reflected by the assumption that by explicitly accepting a set of basic
constructions we implicitly accept all the polynomials based on them. The idea is that if we
are able to construct x out of y and y out of z, then we are surely able to construct x out of z;
more generally, if we are able to construct x out of x1,...,xn and if we are able to construct xi
out of xi

1,..., xi
mi (for every i), then we are able to construct x out of x1

1,...,x1
m1,..., xn

1,...,xn
mn.

In short, it seems to be in the nature of constructing that constructions are composible (and
hence closed under forming polynomials). Thus, addition of polynomials only makes explicit
what is already implicit. In algebraic terms, this means that an algebra A+ which is the
polynomial extension of a given algebra A (i.e. which differs from A in that its family of
operators contains some operators which, while not operators of A, are nevertheless
polynomial over A) amounts to the same constructional system as A.

Janssen (1983) has proven the following theorem: if A and B are many-sorted
algebras, h a homomorphism from A to B, and A+ a polynomial extension of A, then there is
a polynomial extension B+ of B, and a unique extension h+ to a homomorphism from A+ to
B+. If we assume that semantic interpretation is by its nature a homomorphism, then the
theorem implies that addition of polynomial symbols is trivial also in the sense of not being
able to tamper with semantic interpretation: every semantic interpretation of a language can
be extended to a semantic interpretation of a polynomial extension of the language.
 Now besides the fact that the space of constructions is closed under composition, we
may consider its being closed under the inverse operation, decomposition. Whereas the
principle of compositibility of constructions says that we can always merge two subsequent
constructional steps into one, the inverse principle of decomposition says that we can always
divide a nontrivial constructional step into two subsequent simpler steps. The idea is that if

 17

we can use x, y and v to construct z, then it is also possible to, first, use x and y to construct an
intermediary entity w, and then use w and v to construct z. In general, the principle of
decomposition says that if we can construct x out of x1,...,xn and if {i1,...,im} and {j1,...jk} are
disjoint sets whose union is {1,...,n}, then there is a y which can be constructed out of
xi1,...,xim and such that we can construct x out of y,xj1,...,xjk.
 It is, of course, dubious, whether we can assume such a principle to hold generally:
when we are constructing physical things, then, as experience teaches us, we cannot
decompose each step as we please: if we, e.g., fasten two logs together by a string, we cannot
combine one of the logs with the string into a ‘half-way construct’ ready for subsequent
combination with the other log to yield the ultimate construct (the two logs tied together).
However, the situation is different within the realm of abstract entities: there seems to be no
reason not to accept decomposibility as a general principle. (Indeed, this fact might perhaps
be one of the characterizing differences between the two realms.)
 Now assume that decomposition not only always exists, but also is unique. This
means that if C is a unary construction and {i1,...,im} and {j1,...jk} are disjoint sets whose
union is {1,...,n}, then there is a uniquely determined pair of constructions C1 and C2 so that
C(x1,...,xn) = C2(C1(xi1,...,xim),xj1,...,xjk); and hence for any concrete objects a1,...,an from the
domain of C there is an intermediary, ‘half-way’ construct C1(ai1,...,aim) which is constructed
out of ai1,...,aim and is capable of yielding the ultimate construct C(a1,...,an) together with the
rest of the arguments aj1,...,ajk. The object C1(ai1,...,aim) can be characterized by its disposition
to take its part in constructing C(a1,...,an) - and the plausible way to designate it seems to be
something like the lambda notation.
 When we consider composing operators, we need to designate complex, composed
operators (polynomials), and we employ variables to help us build complex designators for
these operators from the simple names of basic operators. When we consider decomposing
operators, certain objects become known as the ‘half-way constructs’ and they become
illuminatingly designatable as such. Thus an object may become viewable as, e.g., a ‘half-way
construct’ on the way from the objects x1,...,xn to the object C(x1,...,xn): as that ‘half-way
construct’ which arises out of exploiting xi1,...,xim, but still not exploiting xj1,...,xjk. Such an
object is then plausibly designated by means of an expression such as ‘λxj1...xjk.C(x1,...,xn)’.
 As polynomial symbols characterize the range polynomial operators, the new symbols
I proposed earlier (see Peregrin, 1992) to call abstractive, characterize a more general range
of operators, abstractive operators. What I then claimed was that the addition of such
abstractive operators to an algebra is still trivial in a sense analogous to that in which it is
trivial to add polynomials. To see this, we must realize that semantic interpretation, as the
term is usually understood, is not simply a homomorphism, but typically a homomorphism
into an algebra of a specific kind. In the terminology of the present paper, it is a
homomorphism into an algebra the operators of which are formal, i.e. devoid of content
(which means, as explained in the previous chapter, that they only bring the capacities of
some elements of the algebra to bear on some other elements). In Peregrin (1992) I called
such algebras applicative and I have proven the following theorem: if A is an algebra, B an
applicative algebra, h a homomorhpism from A to B, and A+ an abstractive extension of A,
then there is an extension B+ of B, and a unique extension h+ of h such that h+ is a
homomorphism from A+ to B+.

This means that by employing not only variables, but also the lambda operator, we
still only make explicit the implicit semantic capacities. However, while polynomial symbols
are bound to stand for operators, abstractive symbols (lambda-terms) may, in the limit case
when all variables are ‘lambda-abstracted away’, stand for objects. In this way variables

 18

appear to be revealing us something about things (in particular about expressions); but what
they really do is only revealing (making explicit, explicating) certain implicit capacities of the
things’ behavior.

4. Conclusion

Regimenting a natural language expression by a formula containing variables should be seen
as revealing neither the variables’ covert presence ‘within’ the expression, nor their presence
‘within the expression’s meaning’, but rather as a functional, usually semantic,
characterization of the expression. Variables have been introduced, and are still best seen as
certain metalinguistic tools, as means of designating functions.

References

Barwise, J., Cooper, R.(1981): ‘Generalized Quantifiers and Natural Language’, Linguistics

and Philosophy 4, 159-219.
Bourbaki, N. (1958): Élements de Mathématique I: Théorie des ensembles, Hermann, Paris.
Chomsky, N.(1986): Knowledge of Language, Praeger, New York.
Church, A. (1940): 'A Formulation of the Simple Theory of Types', Journal of Symbolic

Logic 5, 56-68.
Došen, K. (1988): ‘Second-order logic without variables’, in Categorial Grammar (ed.

W.Buszkowski, W.Marcizsewski & J. van Benthem), Benjamins, Amsterdam.
Frege, G. (1879): Begriffsschrift, Nebert, Halle; translated as Begriffsschrift, in van

Heijenoort (1971), 1-82.
Frege, G.(1891): ‘Function und Begriff’, ein Vortrag, gehlaten in der Sitzung vom 9.1.1891

der Jenaischen Gesellschaft für Medizin und Naturwissenschaft, Jena; translated as
Function and Concept in Geach and Black (1952), 21-41.

Geach P. and M. Black (1952): Translations from the Philosophical Writings of Gottlob
Frege, Blackwell, Oxford.

Grätzer, G.(1979): Universal Algebra, Springer, New York.
Groenendijk, J., M.Stokhof (1991): ‘Dynamic Predicate Logic’, Linguistics and Philosophy

14, 39-101.
Janssen, T.M.V. (1983): Foundations and Applications of Montague Grammar, dissertation,

Mathematical Centre, Amsterdam.
Peregrin, J. (1992): 'The Role of Variables in the Formalization of Natural Language', in

Proceedings of Eight Amsterdam Colloquium, Amsterdam, 463-481.
Peregrin, J. and von Heusinger, K. (1995): ‘Dynamic Semantics with Choice Functions’, in

Choice Functions in Natural Language Semantics (ed. U. Egli & K. von Heusinger),
Universität Konstanz, 43-67.

Peregrin, J. (1995): Doing Worlds with Words, Kluwer, Dordrecht.
Peregrin, J. (to appear): ‘Reference and Inference’, Proceedings of the Workshop „Reference

and Anaphorical Relations“, to be published by Universität Konstanz
Quine, W.V. (1960): 'Variables explained away', Proceedings of the American Philosophical

Society 104, 343-347.

 19

Quine, W.V. (1972): 'Methodological Reflections on Current Linguistic Theory', in Semantics
of Natural Language (ed. D.Davidson and G.Harman), Reidel, Dordrecht, 442-454.

Russell, B. (1905): 'On denoting', Mind 14, 479-493.
Sellars, W. (1974): ‘Meaning as Functional Classification’, Synthèse 27, 417-437.
van Heijenoort, J., ed. (1971): From Frege to Gödel: A Source Book from Mathematical

Logic, Harvard University Press, Cambridge (Mass.)

